

6th International Workshop PROSPECTS ON PROTONIC CERAMIC CELLS

June 8 -10, 2022 - Dijon, France

Effect of sintering conditions on the phase and microstructure features of Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_xO_{3-δ} proton conducting cell components

Mariya E. Ivanova¹, Laura-Alena Schäfer^{1,2}, Yuan Zeng^{1,2}, Wendelin Deibert¹, Norbert H. Menzler^{1,2}, Olivier Guillon^{1,2,3}

Forschungszentrum

m.ivanova@fz-juelich.de

¹ Forschungszentrum Jülich GmbH, *Institute of Energy and Climate Research IEK-1: Materials Synthesis and Processing*, 52425 Jülich, Germany

² RWTH Aachen University, *Institute of Mineral Engineering (GHI)*, *Department of Ceramics and Refractory Materials*, 52064 Aachen, Germany

³ Jülich-Aachen Research Alliance: JARA-Energy, 52425 Jülich, Germany

OUTLINE

- Introduction
- SoA (ref): Strategies
- This work: bulk vs layer configuration (air side, 15 μm)
- Conclusive remarks

INTRODUCTION

- BZCY: PCC used in development of electrochemical devices; electrolyte, constituent of supporting structure
- NiO dual use: i) sintering aid for BZCY and ii) component of the fuel electrode with high activity for the H₂ Evolution Reaction (HER);
- Co-sintering at elevated temperatures
- Ba evaporation, Ni diffusion, Ni incorporated in BZCY lattice compromises its hydration behaviour and conductivity;
- Formation of secondary phases, e.g. BaY₂NiO₅, insulating (Y₂O₃) or O²⁻ conducting (CYO, ZYO);
- (Ni) Electronic pathways across the electrolyte;
- Compromised performance: conductivity drop, electronic leakage, thermochemical-mechanical problems;

Important: Strategy to improve the phase compatibility between the BZCY and NiO in a thin electrolyte layer configuration (Note: reference sources often report about bulk electrolyte specimens, not µm-range layers).

SoA (Ref): STRATEGIES

Proposed as efficient: for bulk material (pellets) Either BZY+NiO (SA) or BZY:60-70%NiO composite

- Co-sintering of BZY with NiO, at 1500°C:
- Y-rich BZY (Y > 12 mol.%): $BaY_2NiO_5 + LP (BaNiO_2)$
- Ba-excess: LP
- Ba-deficiency: Y₂O₃

Bi-phase equilibrium, no SP > $Ba_{1(-0.01)}Zr_{0.88}Y_{0.12}O_{3-\delta}$

[K. Ueno et al., Thermodynamic maximum of Y doping level in barium zirconate in co-sintering with NiO, J. Mater. Chem. A, 2019, 7, 7232-7241]

- Improved compositional homogenization of BZY by increased sintering T (1300°C→1600°C) +
- Manipulating BaO activity at 1500°C > higher BaO activity (embedded sintering) > single phase material (no Y₂O₃ or traces of Ni as residues of BaY₂NiO₅ decomposition).

Y, Ni incorporated in the BZY crystal lattice.

Manipulation of sintering profile (BZY+4 mol.% NiO (SA) Control of Y and Ba content might be more efficient tool for enhanced performance than preventing Ni incorporation

Limited reports on thin supported PCC electrolyte layers BZ with Y in the support being crucial for BaY₂NiO₅ LP formation and electrolyte densification

[D. Han et al., Strategy to improve phase compatibility between proton conductive BZY20 and NiO, RSC Adv. 2016, 6, 19288-19297]

[D. Fagg group at UAVR (PT), personal communication]

[W. Deibert et al., Fabrication of multi-layered structures for proton conducting ceramic cells, J.Mater.Chem.A, 2022, 10, 2362 (2022)]

[K. Leonard et al., Processing ceramic proton conducting membranes for use in steam electrolysis, Membranes 2020, 10, 339-357]

BULK vs LAYER CONFIGURATION

$$Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_xO_{3-\delta}(x = 0.175; 0.24) + 0.5 \text{ wt.}\% \text{ NiO}$$

E1> x = 0.175

Bulk samples (P.) $E_2 > x = 0.24$

$$E_2 > x = 0.24$$

$$Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_xO_{3-\delta}(x = 0.175) + NiO(40:60 wt.\%)$$

S> (not considered currently)

versus ESA

$$Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_xO_{3-\delta}$$
 (x = 0.175; 0.24) + 0.5 wt.% NiO

$$Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_xO_{3-\delta}(x = 0.175) + NiO (40:60 wt.%)$$

$$ESA1> x = 0.175$$

 $ESA2> x = 0.24$

Looking at the pellet top / the electrolyte side in ESA configuration > the side exposed to air during the (co-)sintering.

STARTING POINT PROTOMEM

BZCY

Ce:

 Zr/Ce to be kept balanced: higher ratio better stability but compromised conductivity

Y:

 required for generation of oxygen vacancies, i.e. proton defects, maximal possible content

1. Solubility ranges for Ce, Y in BaZrO₃

- o Pronounced solubility for Ce than for Y
- Ce to be kept up to 20 mol.% (stability) and Y up to 25 mol.% (solubility)
- BaZr_{1-x}Ce_zY_vO_{3-v/2} with y,z \leq 0.45

2. Effect of Ce, Y amounts on BZCY hydration

Hydration TD more favorable with Ce content increasing

BaZr_{1-x}Ce_zY_yO_{3-y/2} with y,z \leq 0.45, e.g. BaZr_{0.56}Ce_{0.2}Y_{0.24}O_{3-δ} BaZr_{0.625}Ce_{0.2}Y_{0.175}O_{3-δ}

Max-Planck-Institut

SAMPLES PREPARATION

Powders (Pwd.)

- Mixing stoichiometric amounts of BaCO₃, ZrO₂, CeO₂, Y₂O₃
- E1, E2> milled, calcined 1100°C/8h, x 3 times
- S> milled, calcined 1300°C/6h
- Addition of NiO, homogenization
 - ➤ as sinter-aid, 0.5 wt.% to E1, E2 powders
 - as cermet forming phase, 60 wt.% to S powder

Bulk samples (P)

Shaping> iso-static pressing
 D =13 mm, L = 2-3mm

ESA

- Ceramic suspensions
- Tape casting
- Shaping samples,10x10 mm

Sintering: 1450°C/6h; 1500°C/3h; 1550°C/3h, 2 K/min, air, MgO

POWDER SAMPLES, SSRS, RT

SSRS mixture developed for tape casting

SSRS mixture sintered @ 1600°C/10h, Air

Used both for P and ESA

BULK SAMPLES Air side, RT

1450.6: BZCY 92%; BZ 6%; Y₂O₃ 2%

1500.3: BZCY 99%; Y₂O₃ 1%

1550.3: BZCY 94%; BZ 5%; Y₂O₃ 1%

 $Ba_{1.015}Zr_{0.8-x}Ce_{0.2}Y_{0.24}O_{3-\delta} + 0.5 \text{ wt.}\% \text{ NiO}$

1450.6: BZCY 95%; BZ 3%; Y₂O₃ 2%

1500.3: BZCY₁ 49%; BZCY₂ 49%; Y₂O₃ 2%

1: a=4.250(2)Å; 2: a=4.258(24)Å;

1550.3: BZCY 99%; Y₂O₃ 1%

ESA SAMPLES Air side, RT

1450.6: BZCY 96%; $Ce_{0.375}Y_{0.625}O_2$ 4% 1500.3: BZCY 95%; $Ce_{0.2}Y_{0.8}O_2$ 5%

1550.3: t.b.d.

ESA SAMPLES Air side, RT

1450.6: BZCY 94%; $Ce_{0.375}Y_{0.625}O_2$ 6%

1500.3: t.b.d.

1550.3: $BZCY_1$ 55%; $BZCY_2$ 31%; $Ce_{0.2}Y_{0.8}O_2$ 14%

1: a=4.271(2)Å; 2: a=4.25(2)Å;

QUANTIFICATION

- **P vs T**: minor YO secondary phase amounts, surface effect at the oxidizing side; undoped/Y,Ce depleted BZ formed as a second phase;
- **ESA** (ca. 15-20 µm): T and Y increase leads to pronounced formation of secondary phases; Higher sintering T yielding more BaY₂NiO₅ in the electrolyte (increased diffusion of Ni from the support). BaY₂NiO₅ phase decomposes at HT; Ce solubility in LP; Ba, Ni evaporate, CYO formed.

LATTICE PARAMETER

- **Pwd**: single phase; reference series with Y15-30: deviation (red line) from the linear **a** increase with Y (Vegard's law, black line). Maximum Y solubility in BZCY at 1600 °C > approx. 25 mol.%.
- **P**: with T increase **a** decreases; At the air side: oxygen incorporation; Y-rich secondary phases (SP) segregated: less acceptor dopant in the BZCY major phase; possible Ni additive incorporation in the lattice.
- **ESA** (ca. 15-20 µm): increase in lattice parameter (better homogenization of main phase; evtl. enhanced Y uptake in BZCY layer with increasing T despite SP formation);

MICROSTRUCTURE: ESA1 (TOP)

[W. Deibert, et al., Fabrication of multi-layered structures for proton conducting ceramic cells, J.Mater.Chem.A, 2022, 10, 2362 (2022)]

MICROSTRUCTURE: ESA1 (TOP vs CS)

STEM-HAADF (TOP)

ESA2.1450.6

<u>1 μm</u>

1 μm

ESA2.1450.6 + red 900.5

STEM-HAADF (CS)

ESA2.1450.6

ESA2.1450.6 + red 900.5

CONCENTRATION PROFILES (TOP)

Member of the Helmholtz Association

ESA2.1450.6 ESA2.1450.6 + red 900.5 Distance, µm 2,0° Distance/µm 1,0 4,0 Distance, µm $1 \, \mu m$ 1 µm

Slide 16

Forschungszentrum

CONSLUSIVE REMARKS

- Strategies to minimise SP in the PCC material proven to be efficient for bulk samples > not always transferrable to supported PCC electrolyte layer
- Most strategies demonstrated on BZY (both experimental and computational approaches) > scarce data about BZCY layers formed on NiO based cermet after co-firing at HT
- Ba deficiency not sufficiently addressed in the literature sources as a critical factor > in some ref $Ba_{(1-x)}$ considered as beneficial for PCC single phase formation
- Ba non-stoichiometry $Ba_{(1-x)}$ underpins the formation of defects > e.g. $(2Ni_iv_{Ba})^{..}$ complex being considered TD favorable (DFT) but harmful for the electrolyte performance
- Slight Ba over-stoichiometry in the electrolyte was probed as a direct measure to address Ba loss in layers, for which covered/embedded sintering is not a practicable option > Ni incorporation in the lattice might be suppressed but BaO sink cannot be really counteracted;
- Y re-incorporation in the BZCY lattice suggested by an increase of the lattice parameter of ESA series
- Manipulation of the sintering profile applied to ESA to be tested as a next approach.

Prot Mem

Bundesministerium für Bildung und Forschung

FK: 03SF0537

- BMBF
- Duration 01.07.2016-30.06.2019
- · Partners: 3 institutions
- . Budget: total ~ 1.4 Mio Euro

INNOPOOL SOLAR H2

Bundesministerium für Bildung und Forschung

· BMBF and HGF

ENERGY RESEARCH FIELD

 ${\it Materials and Technologies for the Energy Transition (MTET)}$

- Duration 01.01.2021-31.12.2023
- Partners: 17 institutes located in 6 HGF-research centers
- Budget: total ~ 6 Mio Euro (~ 60% HGF, rest own contributions)

with own resources

THANK YOU!

ESA1-CS

Forschungszentrum

[W. Deibert, M. E. Ivanova, Y. Huang, R. Merkle, J. Maier, W.A. Meulenberg, *Fabrication of multi-layered structures for proton conducting ceramic cells*, J.Mater.Chem.A, 2022, 10, 2362 (2022)]

CONDUCTIVITY

- ESA1
- ✓ reduced specimens
- ✓ Measured in wet H_2 ($p_{H2O} = 20 \text{ mbar}$)
- Pellets
- ✓ Measured in wet N_2 (700 °C- 400 °C) and wet 2% H_2 at lower T

